ITERATING THE BASIC CONSTRUCTION

MIHAI PIMSNER AND SORIN POPA

ABSTRACT. Let $N\subset M$ be a pair of type II_1 factors with finite Jones' index and $N\subset M\subset M_1\subset M_2\subset \cdots\subset M_n\subset \cdots\subset M_{2n+1}$ be the associated tower of type II_1 factors obtained by iterating Jones' basic construction. We give an explicit formula of a projection in M_{2n+1} which implements the conditional expectation of M_n onto N, thus showing that M_{2n+1} comes naturally from the basic construction associated to the pair $N\subset M_n$. From this we deduce several properties of the relative commutant $N'\cap M_n$.

Introduction. Let $N \subset M$ be a pair of finite factors. Jones defined in [1] the index [M:N] of N in M to be the coupling constant of N in its representation on $L^2(M)$. If this index is finite, then the trace preserving conditional expectation of M onto N, regarded as an operator on $L^2(M)$, generates together with M a finite factor M_1 . This factor is called in Jones' terminology the extension of M by N and the construction of M_1 from M and N, the basic construction. The pair $M \subset M_1$ has the remarkable property that $[M_1:M]=[M:N]$, so this procedure may be iterated to get an increasing sequence of finite factors $N \subset M \subset M_1 \subset M_2 \subset \cdots$ and together with it a sequence of projections $e_i \in M_{i+1}$, $i \geq 0$, implementing the conditional expectations at consecutive steps.

We prove in this paper that in this sequence of factors the basic construction arises periodically from n to n steps, for any n. In fact we give a formula for a projection f_n in M_{2n+1} that implements the conditional expectation of M_n onto N: f_n is a scalar multiple of the word of maximal length in $\{e_i\}_{0 \le i \le 2n}$, namely

$$f_n = [M:N]^{n(n+1)/2} (e_n e_{n-1} \cdots e_0) (e_{n+1} e_n \cdots e_1) \cdots (e_{2n} \cdots e_n).$$

We mention that this result was independently obtained by A. Ocneanu [2]. We apply this theorem to show that if the logarithm of the index [M:N] equals the relative entropy H(M|N) considered in [3], then one also has

$$H(M_n|N) = \ln[M_n:N]$$
 for every n .

Since this equality characterizes an extremal case for an inclusion of factors, from the analysis of a similar situation in [3] we deduce several properties of the inclusion $N \subset M_n$ and of the relative commutant $N' \cap M_n$.

1. Preliminaries. Throughout this paper M will be a finite factor with normalized trace τ , $\tau(1)=1$. We denote by $||x||_2=\tau(x^*x)^{1/2}, x\in M$, the Hilbert norm given by τ and by $L^2(M,\tau)$ the Hilbert space completion of M in this norm. The canonical conjugation of $L^2(M,\tau)$ is denoted by J. It acts on $M\subset L^2(M,\tau)$

Received by the editors February 23, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46L35; Secondary 46L10.

by $Jx = x^*$ and satisfies JMJ = M'. In fact, if we regard M as acting by left multiplication on $L^2(M, \tau)$ then for $x \in M$, JxJ is the operator of right multiplication by x^* .

 $N \subset M$ will denote a subfactor of M with $1_N = 1_M$ and E_N will be the unique normal trace preserving conditional expectation of M onto N. Note that E_N is just the restriction to $M \subset L^2(M,\tau)$ of the orthogonal projection e_N of $L^2(M,\tau)$ onto $L^2(N,\tau)$ (the closure of N in $L^2(M,\tau)$). The conditional expectation E_N , the projection e_N and the conjugation J are related by the properties

- (i) If $x \in M$ then $x \in N$ iff $e_N x = x e_N$.
- (ii) $e_N x e_N = E_N(x) e_N$, $x \in M$.
- (iii) J commutes with e_N .

If the index of N in M is finite then from the pair $N \subset M$ one can construct a new pair of finite factors $M \subset M_1$ with the same index $[M_1 : M] = [M : N]$. The construction of M_1 is called the basic construction and the factor M_1 is called the extension of M by N.

We recall from [1] the definition and main properties of M_1 :

- 1.1 PROPOSITION. Define $M_1 = JN'J$. Then we have
- $1^{\circ} M_1 = (M \cup \{e_N\})'',$
- 2° $[M_1:M]=[M:N]$ and if τ denotes the unique normalized trace on M_1 and E_M the τ preserving conditional expectation of M_1 onto M, then $E_M(e_N)=[M:N]^{-1}1_M$ or equivalently $\tau(e_Nx)=[M:N]^{-1}\tau(x)$ for every $x\in M$.

Part 1° of this proposition can be made more precise: by [3], if $n+1 \geq [M:N]$ then any element in M_1 is a sum of at most $(n+1)^2$ monomials of the form xe_Ny , $x,y\in M$. Note that M_1 can also be described abstractly as the unique (up to isomorphism) finite factor M_1 which contains M and a projection e so that $[M_1:M]=[M:N]$, [e,y]=0 for $y\in N$, $exe=E_N(x)e$ for $x\in M$, and with the trace τ satisfying $\tau(ex)=[M_1:M]^{-1}\tau(x)$, $x\in M$. In fact one of the conditions is redundant: the next proposition gives two equivalent ways of characterizing M_1 .

- 1.2 PROPOSITION. Let $N \subset M$ be a pair of finite factors with finite index and M_1 the extension of M by N. Let \tilde{M} be a finite factor that contains M and with normalized trace $\tilde{\tau}$, E_M the $\tilde{\tau}$ -preserving conditional expectation of \tilde{M} onto M and $e \in \tilde{M}$ an orthogonal projection. Then the following conditions are equivalent:
- 1° There exists an isomorphism ϕ of M_1 onto \tilde{M} such that $\phi(x) = x$ for $x \in M$ and $\phi(e_N) = e$.
 - 2° (i) $[e, y] = 0, y \in N$;
 - (ii) $E_M(e) = [\tilde{M}:M]^{-1}1_M = [M:N]^{-1}1_M$.
 - 3° (i) $exe = E_N(x)e$, $x \in M$, and $e \neq 0$;
 - (ii) e and M generate \tilde{M} as a von Neumann algebra.

PROOF. 1° implies 2° by the known properties of e_N .

Suppose 2° holds. Then by 1.8 of [3] we get that \tilde{M} is the extension of M by P where $P = \{e\}' \cap M$. But (i) implies that $N \subset P$ and since $[M:P] = [\tilde{M}:M] = [M:N]$ we conclude that N = P. Thus e and M generate \tilde{M} as a von Neumann algebra and again by 1.8 of [3] we get $E_N(x)e = exe$, for every $x \in M$.

Assume that 3° holds. Using the "orthonormal basis" of [3] it is easy to see that the map $\phi: M_1 \to \tilde{M}$ that sends $\sum x_i e_N y_i$ to $\sum x_i e y_i$ is a well-defined *homomorphism. Moreover ϕ satisfies $m\phi(x) = \phi(mx)$ for every $m \in M$ and $x \in M_1$. This shows that $\phi(1)$ is a projection that commutes with e and with every $m \in M$. By (ii) we conclude that $\phi(1)$ is central and since $e \neq 0$ and M is a factor $\phi(1) = 1$. This implies now that $\phi(m) = \phi(m1) = m\phi(1) = m$ and since obviously $\phi(e_N) = e$ we get 1°. Q.E.D.

The pair $M \subset M_1$ having finite index one can construct its extension $M_1 \subset M_2$ and in fact the whole procedure may be iterated to get an increasing sequence of finite factors $N \subset M \subset M_1 \subset M_2 \subset \cdots$, and orthogonal projections $e_i \in M_{i+1}$, $i \geq 0$ $(N = M_{-1}, M = M_0)$ in which M_{i+1} is the extension of M_i by M_{i-1} or in other words M_{i+1} and e_i are obtained by the basic construction from the pair $M_{i-1} \subset M_i$. Thus if τ denotes the unique normalized trace on $\bigcup_i M_i$ and $E_{M_{i-1}}$ the τ -preserving conditional expectation of M_i onto M_{i-1} , $i \geq 0$, then:

- (a) $[e_i, y] = 0$ for $y \in M_{i-1}$;
- (b) $e_i x e_i = E_{M_{i-1}}(x) e_i, x \in M_i;$
- (c) $[M_{i+1}: M_i] = [M:N]$ and $E_{M_i}(e_i) = [M:N]^{-1}1$.

In particular it follows that the sequence of projections e_i satisfies $[e_i, e_j] = 0$, $|i - j| \ge 2$, $e_i e_{i \pm 1} e_i = [M : N]^{-1} e_i$ and $\tau(e_i w) = [M : N]^{-1} \tau(w)$ for every word in $1, e_0, e_1, \ldots, e_{i-1}$.

2. n-step extensions. In this section we prove the main result of the paper: we show that if $N \subset M \subset M_1 \subset \cdots$ is the sequence of finite factors obtained by iterating the basic construction as in §1, then, for each n > 0, M_{2n+1} is the extension of M_n by N. In fact we give an explicit formula for a projection $f_n \in M_{2n+1}$ which implements the conditional expectation of M_n onto N and generates with M_n the factor M_{2n+1} : f_n will be a scalar multiple of the word of maximal length in e_0, e_1, \ldots, e_{2n} where $e_i \in M_{i+1}$ are as in §1.

We define for each $n, k \geq 0$ the element

$$g_n^k = (e_{n+k}e_{n+k-1}\cdots e_k)(e_{n+k+1}e_{n+k}\cdots e_{k+1})\cdots(e_{2n+k}e_{2n+k-1}\cdots e_{n+k})$$

(there are n+1 products of parentheses and in each parentheses the product of n+1 consecutive projections e_i in decreasing order). We put $f_n^k = [M:N]^{n(n+1)/2} g_n^k \in M_{2n+k+1}$ and $f_n = f_n^0 \in M_{2n+1}$.

To prove that the above defined f_n implements the basic construction in the extension of M_n by N, we only have to show that f_n is an orthogonal projection, that $f_n \in N' \cap M_{2n+1}$ and that $E_{M_n}(f_n) = [M_n : N]^{-1} = [M_{2n+1} : M_n]^{-1}$. (See Proposition 1.2.) Note that since $[M_{i+1} : M_i] = [M : N]$, by the multiplicative property of the index we do have $[M_n : N] = [M : N]^{n+1} = [M_{2n+1} : M_n]$. To prove the other properties, let us first recall some facts about the algebra generated by $\{e_i\}_{i>0}$ (cf. [1]).

A finite product of e_i 's is called a word. It is called a reduced word if it is of minimal length for the grammatical rules $e_i e_{i\pm 1} e_i \leftrightarrow e_i$, $e_i^2 \leftrightarrow e_i$ and $e_i e_j \leftrightarrow e_j e_i$ for $|i-j| \geq 2$. Note that any word is a scalar multiple of a reduced word. Jones pointed out (in [1, 4.1.4]) that reduced words can be uniquely written in the ordered form

$$(*) w = (e_{j_1}e_{j_1-1}\cdots e_{k_1})(e_{j_2}e_{j_2-1}\cdots e_{k_2})\cdots (e_{j_p}e_{j_p-1}\cdots e_{k_p})$$

where $j_i \ge k_i$, $j_{i+1} > j_i$, $k_{i+1} > k_i$.

From this description of reduced words it follows that if a reduced word w is written with the letters $e_r, e_{r+1}, \ldots, e_s$ $(s \ge r)$ then e_{r+i} and e_{s-i} appear at most i+1 times in w.

To prove the theorem we first show that g_n^0 are selfadjoint elements. This will be an easy consequence of the next two lemmas.

2.1 LEMMA. g_n^0 is the unique reduced word of maximal length in e_0, e_1, \ldots, e_{2n} .

PROOF. Since by definition g_n^0 is of the form (*) it is a reduced word. As noted before if w is an arbitrary reduced word in e_0, e_1, \ldots, e_{2n} then e_0, e_{2n} appear at most once in w, e_1, e_{2n-1} at most twice and more generally e_k, e_{2n-k} at most k+1 times. Thus the length of w is at most equal to $1+2+\cdots+n+(n+1)+n+\cdots+2+1$ and by inspecting the conditions $j_i \geq k_i$, $j_{i+1} > j_i$, $k_{i+1} > k_i$ of (*) it follows that the only reduced word w with this length is obtained when $j_i = n+i$, $k_i = i$, i.e. $w = g_n^0$. Q.E.D.

2.2 LEMMA. If w is a reduced word in e_0, e_1, \ldots, e_{2n} then the reduced form of w^* has the same length as w.

PROOF. Indeed, w^* has length at most equal to that of w and since $(w^*)^* = w$, the statement follows. Q.E.D.

To prove that g_n^0 are scalar multiples of projections we have to compute $(g_n^0)^2$. To do this we use an induction argument based on the formula

2.3 LEMMA.
$$g_n^0 = (e_n e_{n+1} \cdots e_{2n}) g_{n-1}^0 (e_{2n-1} \cdots e_n).$$

PROOF. The equality follows by pushing e_{2n} to the left as much as possible in the formula giving g_n^0 . Q.E.D.

2.4 REMARK. Two other equalities that can be obtained in a similar fashion and seem to be of interest are

$$g_n^0 = g_{n-1}^1(e_{2n}\cdots e_{n+1})(e_0\cdots e_n) = (e_ne_{n-1}\cdots e_0)g_{n-1}^2(e_1e_2\cdots e_n).$$

To show that g_n^0 projects on a scalar in M_n we prove

2.5 Lemma. $E_{M_{2n}}(g_n^0) = [M:N]^{-(n+1)}g_{n-1}^1$. More generally

$$E_{M_{2n+k}}(g_n^k) = [M:N]^{-(n+1)}g_{n-1}^{k+1}.$$

PROOF. It is enough to prove that $E_{M_{2n}}(g_n^0) = \lambda^{n+1}g_{n-1}^1$, where $\lambda = [M:N]^{-1}$, because the rest of the statement follows by starting the sequence of factors from $M_{k-1} \subset M_k$, instead of $N = M_{-1} \subset M_0 = M$.

We first show that for $j \ge p \ge k+1$ we have

$$(**) (e_j e_{j-1} \cdots e_k)(e_p e_{p-1} \cdots e_{k+1}) = \lambda(e_{p-2} \cdots e_k)(e_j \cdots e_{k+1}).$$

Indeed we have

$$(e_j e_{j-1} \cdots e_p e_{p-1} \cdots e_k) e_p = \lambda(e_j e_{j-1} \cdots e_p) (e_{p-2} e_{p-3} \cdots e_k)$$
$$= \lambda(e_{p-2} \cdots e_k) (e_j e_{j-1} \cdots e_p),$$

which easily implies (**). Applying recursively (**) we get

$$\begin{split} E_{M_{2n}}(g_{n}^{0}) &= (e_{n}e_{n-1}\cdots e_{0})\cdots(e_{2n-1}\cdots e_{n-1})E_{M_{2n}}(e_{2n})(e_{2n-1}\cdots e_{n}) \\ &= \lambda(e_{n}\cdots e_{0})\cdots(e_{2n-1}\cdots e_{n-1})(e_{2n-1}\cdots e_{n}) \\ &= \lambda^{2}(e_{n}\cdots e_{0})\cdots(e_{2n-2}e_{2n-3}\cdots e_{n-2})(e_{2n-3}\cdots e_{n-1})(e_{2n-1}\cdots e_{n}) \\ &= \lambda^{3}(e_{n}\cdots e_{0})\cdots(e_{2n-5}\cdots e_{n-2})(e_{2n-2}\cdots e_{n-1})(e_{2n-1}\cdots e_{n}) \\ &= \cdots = \lambda^{n}(e_{n}\cdots e_{0})e_{1}(e_{n+1}\cdots e_{2})\cdots(e_{2n-2}\cdots e_{n-1})(e_{2n-1}\cdots e_{n}) \\ &= \lambda^{n+1}(e_{n}\cdots e_{1})(e_{n+1}\cdots e_{2})\cdots(e_{2n-1}\cdots e_{n}) = \lambda^{n+1}g_{n-1}^{1}. \quad Q.E.D. \end{split}$$

We can now prove the theorem.

2.6 THEOREM. Let $N \subset M$ be a pair of finite factors with $[M:N] < \infty$. Let $N \subset M \subset M_1 \subset \cdots$ be the sequence of finite factors obtained by iterating the basic construction and $e_i \in M_{i+1}$ the projection implementing the conditional expectation of M_i onto M_{i-1} at each step of the basic construction as in §1, for $i \geq 0$ $(M_{-1} = N, M_0 = M)$. Let

$$f_n = [M:N]^{n(n+1)/2} (e_n e_{n-1} \cdots e_0) (e_{n+1} e_n \cdots e_1) \cdots (e_{2n} e_{2n-1} \cdots e_n) \in M_{2n+1}.$$

Then M_{2n+1} is the extension of M_n by N and $f_n \in M_{2n+1}$ is the projection that implements the conditional expectation of M_n onto N, i.e. $f_n \in N' \cap M_{2n+1}$, $f_n x f_n = E_N(x) f_n$, $x \in M_n$, $E_{M_n}(f_n) = [M_n : N]^{-1}$ and $M_{2n+1} = (M_n \cup \{f_n\})''$.

PROOF. We will prove the theorem by induction over $n \geq 0$. If n = 0 then $f_0 = e_0$ and we have nothing to prove. Assume the statement is true up to n-1. Let $\lambda = [M:N]^{-1}$ and $c_n = \lambda^{-n(n+1)/2}$. Since $f_n = c_n g_n^0$ and g_n^0 is a word in e_0, e_1, \ldots, e_{2n} , which all commute with N, it follows that $f_n \in N' \cap M_{2n+1}$. Note also that since $e_{2n} \in M'_{2n-1} \cap M_{2n+1}$, e_{2n} commutes with $g_n^0 = M_{2n-1}$. To see that g_n^0 is selfadjoint we use Lemma 2.2 to obtain that g_n^{0*} has the same length as g_n^0 and thus by Lemma 2.1 $g_n^0 = (g_n^0)^*$. Further, Lemma 2.3 implies that

$$\begin{split} (g_{n}^{0})^{2} &= g_{n}^{0*} g_{n}^{0} \\ &= (e_{n} e_{n+1} \cdots e_{2n-1}) g_{n-1}^{0} (e_{2n} e_{2n-1} \cdots e_{n+1} e_{n} e_{n+1} \\ &\qquad \qquad \cdots e_{2n-1} e_{2n}) g_{n-1}^{0} (e_{2n-1} \cdots e_{n}) \\ &= \lambda^{n} (e_{n} e_{n+1} \cdots e_{2n-1}) g_{n-1}^{0} e_{2n} g_{n-1}^{0} (e_{2n-1} \cdots e_{n}) \\ &= \lambda^{n} (e_{n} e_{n+1} \cdots e_{2n}) (g_{n-1}^{0})^{2} (e_{2n-1} \cdots e_{n}) \\ &= \lambda^{n} c_{n-1}^{-1} (e_{n} e_{n+1} \cdots e_{2n}) g_{n-1}^{0} (e_{2n-1} \cdots e_{n}) \\ &= \lambda^{n} c_{n-1}^{-1} g_{n}^{0} = c_{n}^{-1} g_{n}^{0}. \end{split}$$

Thus $f_n = c_n g_n^0$ is a selfadjoint projection in $N' \cap M_{2n+1}$. Next we apply recursively Lemma 2.5 to get

$$\begin{split} E_{M_n}(f_n) &= c_n E_{M_n}(g_n^0) = c_n E_{M_n} E_{M_{2n}}(g_n^0) = c_n \lambda^{n+1} E_{M_n}(g_{n-1}^1) \\ &= c_n \lambda^{n+1} E_{M_n} E_{M_{2n-1}}(g_{n-1}^1) = c_n \lambda^{(n+1)+n} E_{M_n}(g_{n-2}^2) \\ &= \dots = c_n \lambda^{(n+1)+n+\dots+2} E_{M_n}(g_0^n) = c_n \lambda^{(n+1)+n+\dots+2} E_{M_n}(e_n) \\ &= c_n \lambda^{(n+2)(n+1)/2} 1_{M_n} = \lambda^{n+1} 1_{M_n} \end{split}$$

(we used $g_0^n = e_n$).

Moreover by [1],

$$\begin{split} [M_{2n+1}:M_n] &= \prod_{n \leq i \leq 2n} [M_{i+1}:M_i] = [M:N]^{n+1} \\ &= \prod_{0 \leq i \leq n} [M_{i+1}:M_i] = [M_n:N]. \end{split}$$

By Proposition 1.2 the rest of the properties of f_n follow automatically. Q.E.D.

2.7 REMARK. We could include the proof of $g_n^0 = g_n^{0*}$ in the induction argument. Indeed by Lemma 2.3 and using $g_{n-1}^0 = (g_{n-1}^0)^*$ and $[e_{2n}, g_{n-1}^0] = 0$ we get

$$(g_n^0)^* = e_n e_{n+1} \cdots e_{2n} (g_{n-1}^0)^* e_{2n-1} e_{2n-2} \cdots e_n$$

= $e_n e_{n+1} \cdots e_{2n} g_{n-1}^0 e_{2n-1} \cdots e_n = g_n^0$.

We preferred however the deductive argument of Lemmas 2.1 and 2.2 as it points out some properties of f_n .

- **3. Some applications.** In this section we derive some consequences on the inclusion $N \subset M_n$. We consider the case when the relative entropy H(M|N) considered in [3] satisfies $H(M|N) = \ln[M:N]$. An important case when this equality occurs is when $N' \cap M = \mathbb{C}$ (cf. [3]). First we compute the relative entropy from n to n steps.
 - 3.1 THEOREM. If $H(M|N) = \ln[M:N]$ then

$$H(M_{n+k}|M_{k-1}) = \ln[M_{n+k}:M_{k-1}], \text{ for every } n, k \ge 0.$$

In particular $H(M_n|N) = \ln[M_n : N]$ and $H(M_k|M_{k-1}) = \ln[M_k : M_{k-1}]$, for every $k \ge 0$.

PROOF. Since $H(M,N) = \ln[M:N]$, $E_{N'\cap M}(e_0) = \lambda 1$ and the anti-isomorphism $N'\cap M\ni x'\mapsto \theta_0(x')=J_Mx'J_M\in M'\cap M_1$ is trace preserving (cf. 4.5 in [3]). To show that $E_{M'\cap M_1}(e_1)=\lambda 1$ it suffices to prove that $M'\cap M_1\ni y'\mapsto \theta_1(y')=J_{M_1}y'J_{M_1}\in M'\cap M_1$ is also trace preserving (cf. [3]). But $\theta_1\theta_0=\sigma'$, where σ' is the restriction to $N'\cap M$ of the isomorphism σ defined in [3, 1.3], $\sigma'(x')=\lambda^{-1}\sum_i m_i e_0 e_1 x' e_0 m_i^*$, with $\{m_i\}$ an orthonormal basis of M over N. Indeed if $x'=\sum_i m_i n_i\in N'\cap M$, with $n_i\in N$, then $\theta_0(x')\in M_1$ implies $\theta_0(x')=\sum_{i,j} m_i E_N(m_i^*m_j x'^*)e_N m_j^*$ and thus in $L^2(M_1,\tau)$ we have

$$\begin{split} \theta_1(\theta_0(x'))(m_p n e_0 m_r^*) &= \sum_{i,j} m_p n e_0 m_r^* m_j E_N(x' m_j^* m_i) e_0 m_i^* \\ &= \sum_i m_p n e_0 E_N(x' m_r^* m_i) m_i^* = m_p n e_0 x' m_r^* \\ &= m_p e_0 x' n m_r^* = \sigma'(x') (m_p n e_0 m_r^*), \end{split}$$

for all $n \in N$. Thus, since σ', θ_0 are trace preserving, θ_1 is also trace preserving. Induction now shows that $E_{M_k' \cap M_{k+1}}(e_k) = \lambda 1, k \geq -1$, and thus $H(M_{k+1}, M_k) = \ln[M_{k+1} : M_k]$.

To prove that $H(M_{n+k}|M_{k-1}) = \ln[M_{n+k}:M_{k-1}]$ it now suffices to prove that $H(M_n|N) = \ln[M_n:M]$ or, by [3], $E_{M_n \cap M_{2n+1}}(f_n) = \lambda^{n+1} 1_{M_{2n+1}}$. Since

 $M'_n \cap M_{2n+1} \subset M'_{n-1} \cap M_{2n+1} \subset \cdots \subset M' \cap M_{2n+1}$ we have $E_{M'_n \cap M_{2n+1}} = E_{M'_n \cap M_{2n+1}} E_{M'_{n-1} \cap M_{2n+1}} \cdots E_{M' \cap M_{2n+1}}$. Since e_0 appears only once in g_n^0 and $E_{M' \cap M_{2n+1}}(e_0) = \lambda 1$ and $e_i \in M'_{i-1}$, it follows that

$$E_{M'\cap M_{2n+1}}(g_n^0)=(e_n\cdots e_1E_{M'\cap M_{2n+1}}(e_0))(e_{n+1}\cdots e_1)\cdots(e_{2n}e_{2n-1}\cdots e_n).$$

Using now the same computations as in the proof of 2.6 it follows that

$$E_{M'\cap M_{2n+1}}(g_n^0) = \lambda^{n+1}g_{n-1}^1.$$

By induction it follows that

$$E_{M'_n \cap M_{2n+1}}(g_n^0) = \lambda^{n+1} E_{M'_n \cap M_{2n+1}}(g_{n-1}^1) = \lambda^{n+1} E_{M'_n \cap M_{2n+1}} E_{M'_1 \cap M_{2n+1}}(g_{n-1}^1)$$
$$= \lambda^{n+1} \lambda^n E_{M'_n \cap M_{2n+1}}(g_{n-2}^2) = \dots = \lambda^{(n+1)+n+\dots 1} I$$

and thus $E_{M'_n \cap M_{2n+1}}(f_n) = \lambda^{n+1}I$. Q.E.D.

- 3.2 COROLLARY. Let $N \subset M$ be as in Theorem 3.1. Let J_n be the canonical conjugation on $L^2(M_n, \tau)$. Suppose M_{2n+1} is represented on $L^2(M_n, \tau)$ so that to coincide with the basic construction of $N \subset M_n$. Then we have
 - (i) For every projection $f \in N' \cap M_n$, $[(M_n)_f : N_f] = [M_n : N]\tau(f)^2$.
- (ii) The anti-isomorphism $N' \cap M_n \ni x \mapsto J_n x J_n \in M'_n \cap M_{2n+1}$ is trace preserving.
- (iii) For every $k \geq 0$ there exists a trace preserving isomorphism $N' \cap M \ni x \mapsto x' \in M'_{k-1} \cap M_k$ so that for every minimal projection $f \in N' \cap M$, $[M_f : N_f] = [(M_k)_f : (M_{k-1})_{f'}]$.

PROOF. By 4.5 in [3] the condition $H(M_n|N) = \ln[M_n : N]$ is equivalent to the above conditions (i) and (ii). Then (iii) follows by (i), (ii) and by the fact that given any trace preserving anti-isomorphism between two finite-dimensional algebras there exists a trace preserving isomorphism between them which acts on the centers in the same way the anti-isomorphism does. Q.E.D.

REFERENCES

- 1. V. Jones, Index for subfactors, Invent. Math. 75 (1983), 1-25.
- 2. A. Ocneanu, in preparation.
- 3. M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. Ecole Norm. Sup. 19 (1986), 57-106.

THE NATIONAL INSTITUTE FOR SCIENTIFIC AND TECHNICAL CREATION, DEPARTMENT OF MATHEMATICS, BD. PACII 220, 79622 BUCHAREST, ROMANIA

Current address (M. Pimsner): Culmea Veche No 2, Sector 3, Bucharest, Romania

Current address (S. Popa): Department of Mathematics, University of California, Los Angeles, California 90024